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The relationships between the first three density virial coefficients (B, C, and D) 
and the first four acoustic virial coefficients ( to , ) , , ,  tia, and e,) are rederived 
and a published error relating D to Jo is corrected. We observe that even if the 
n th and higher-density virial coefficients of a hypothetical gas are identically 
zero, the nth and higher acoustic virial coefficients are not zero; they depend on 
the temperature derivatives of the 1st through ( n - 1  )th density virial coef- 
ficients. Thus, two density virial coefficients may suffice for a fit to acoustic data 
with a cubic pressure dependence. These results are exploited by extending the 
pressure range of fits to previously published speed-of-sound data without either 
introducing additional parameters or degrading the fits. We deduce gas densities 
from fits to speed-of-sound data with acoustic virial coefficients having the tem- 
perature dependencies calculated from square-well potentials. The estimated 
densities differ from independent measurements by a few tenths of a percent in 
an important range of conditions. These estimates require no p-p-T data 
whatsoever. 

KEY WORDS: acoustic virial coefficient; gas densities; equation of state; 
speed of sound; thermodynamic properties; virial coefficients. 

1. I N T R O D U C T I O N  

As prec ise  a n d  a c c u r a t e  s p e e d - o f - s o u n d  o f  d a t a  for  gases  h a v e  b e c o m e  

m o r e  ava i l ab le ,  the  p r o b l e m  o f  d e d u c i n g  o t h e r  t h e r m o d y n a m i c  p rope r t i e s  

f r o m  such  d a t a  has  b e c o m e  m o r e  urgent .  Here ,  we c o n s i d e r  c i r c u m s t a n c e s  

tha t  we  f r equen t ly  e n c o u n t e r e d  d u r i n g  N I S T ' s  s tudies  o f  n u m e r o u s  

c a n d i d a t e  r e p l a c e m e n t  re f r ige ran t s  [ 1-3 ]. W e  m e a s u r e d  the  speed  o f  s o u n d  

i Physical and Chemical Properties Division, Chemical Science and Technology Laboratory, 
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A. 

2 To whom correspondence should be addressed. 

1305 

0195-928X/96/1100-1305509.50/0 © 1996 Plenum Publishing Corporation 



1306 Gillis and Moldover 

u(p, T) as a function of the pressure p and the temperature T in the vapor 
phase of many compounds for which few or no accurate equation-of-state 
data (i.e., p-p-T data) had been published. Typically, the data spanned the 
temperature and pressure range 0.6 ~< T/Tc ~< 1.0 and 0.05 ~< p ~< 1.0 MPa, 
and we also needed to estimate the density of these gases in this range. 
(Here, Tc is the critical temperature.) To do so, we used the density virial 
equation of state and we represented the temperature dependencies of the 
first three density virial coefficients (B, C, and D) by the temperature 
dependencies calculated from hard-core square-well potentials (HCSWP). 
In so doing we discovered both an error and an oversight in the literature; 
both are corrected below. 

The HCSWP has three parameters which may be chosen as the 
volume of the hard core, the depth of the square well, and the width of the 
square well. To represent adequately the speed-of-sound data, it was 
necessary to use separate triads of parameters for each of the virial coef- 
ficients B, C, and D. Thus, little physical significance can be attached to the 
exact values of the parameters. Nevertheless, the temperature dependencies 
of the virial coefficients themselves are satisfactory at low and moderate 
reduced temperatures (e.g., 0.6~< T/T¢<<,2.0). Furthermore, these virial 
coefficients enable one to estimate the densities of the gases within 0.1% 
over a range of conditions (up to 1 MPa) of importance in many engi- 
neering applications. The estimates do not require any p-p-T data what- 
soever. At very high temperatures, the HCSWP virial coefficients approach 
positive constants. This feature is not realistic; however, the limiting 
behavior occurs at temperatures well above To, hence it is never encoun- 
tered when considering fluids used in two-phase heat transfer applications. 

In almost every case that we have studied, the HCSWP equation of 
state underestimates the density of the gas at the lowest temperatures and 
highest pressures. We do not know the origin of this systematic error. 
However, if more accurate estimates of gas densities were required, one 
could account for this systematic underestimate by making an ad hoc 
correlation using the present data and applying the correlation to future 
data. 

The present approach to obtaining thermodynamic properties from 
speed-of-sound data contrasts with the rigorous algorithm of Trusler and 
Zarari [4]. These authors deduced the equation of state of methane in the 
range 1.45 ~< T/T¢<~ 1.97 and 0 .4~p  ~< 10 MPa (indicated as methane II 
and methane III in Fig. 1 ). They numerically integrated their very accurate 
speed-of-sound data spanning the same range. The integration does not 
assume any specific form for the equation of state; however, it requires 
initial conditions. For initial conditions, Trusler and Zarari used values of 
the compression factor Z=p/(pRT) and its derivative (OZ/Op)r that were 
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obtained by Pieperbeck et al. [5]  from p-p-T data at 275 K, i.e., at 
T/Tc = 1.45. When the speed-of-sound data were integrated to T/Tc = 1.97, 
the resulting values of p differed from independent measurements by only 
0.01%. 

We tested the HCSWP approach with the speed-of-sound data u(p, T) 
for methane that Trusler and Zarari used. As these authors noted, up to 
seven terms are required to fit u 2 as a polynomial function of the pressure 
on isotherms. Thus, it was not surprising that the virial equation could not 
fit the speed-of-sound data within their uncertainty in the same range 
( 1.45 <~ T/Tc <~ 1.97 and 0.4 ~< p ~< 10 MPa), even when a fifth virial coef- 
ficient E was included. Also, it was not surprising that the estimates of p 
from the virial equation were comparatively poor. In the worst case, the 
estimated value of p differed by 0.5 % from the accepted value of p. When 
we restricted the pressure range on the lowest isotherm to 0.4~<p~< 
6.8 MPa, but kept the full pressure range for the higher isotherms, the 
values of p deduced from a fit to the speed-of-sound data differed from 
independent measurements by less than 0.16 % throughout the range of the 
fitted data. In this range, the HCSWP approach will be useful for other 
gases when the accurate p-p-T data required for the initial conditions do 
not exist. 

We also considered an even more restricted range, methane II in 
Fig. 1, that is bounded by 1A5 ~< T/T~ <~ 1.97 and 0.4~<p~<3 MPa. Here, 
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the HCSWP virial equation of state could encompass an additional data 
set [6] (methane I in Fig. 1) at lower temperatures (0.66 ~< T/T,.<,N 1.32 and 
0.02 ~<p ~< 1.4 MPa) without either introducing additional parameters or 
degrading the accuracy of the determination of p. Indeed, within this range, 
the HCSWP densities were within 0.06 % of the independently determined 
densities. 

The remainder of this manuscript is organized as follows. First, w~ 
review the exact thermodynamic relations connecting the density virial 
coefficients B, C, D, and E that occur in the expansion of p(p, T) to the 
acoustic pressure virial coefficients fl~, ?~, 5~, and ea that occur in the 
expansion of u2(p, T). Then we introduce the explicit parameters and 
temperature dependencies resulting from the HCSWP. Finally, we apply 
the results to several sets of data from the literature. 

2. THE VIRIAL EQUATION OF STATE 

The equation of state (EOS) of a gas relates the gas pressure p to the 
temperature T and density p (or volume V). For dilute gases, the EOS is 
often represented as an expansion in 1/V, 

B C D ) 
pV=RT 1 + ~ + - - ~  +--V-3 + • .. (1) 

where the virial coefficients B, C, D, etc., are functions of temperature only 
and R is the universal gas constant. The speed of sound u in a gas may be 
calculated from the relation 

u'-= ( ~ )  1 ? (2> 
s=Pfls  Pflr 

where fls is the adiabatic compressibility. When Eq. (1) is used for p and 
for fir in Eq. (2) the result is 

u,=),RT(1 2B 3C 4D ) 
+ - - V + V _ _ + 7 +  ... M m \  

(3) 

where M m is the molar mass, ?( T, p) is given by 

Y = ~ v  = I  -C--~v r\OTJv 
(4) 
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and the isochoric heat capacity is given by 

Cv = Cv - Tfv \~ - - , / v  (5) 

After substituting Eqs. (1), (4), and (5) into Eq. (3), we have 

y°RT , L M N 
u2= Mm (1 K ..-) (6) 

where yo is the ratio of the isobaric to the isochoric specific heats in the 
limit of zero pressure. 

Like the virial equation of state, Eq. (6) is an expansion about the 
ideal gas limit. The coefficients K, L, M, N, etc., are functions of T only, 
and they may be expressed in terms of the virial coefficients and yo by 

K = 2 B +  2(y ° -  1) B t + - -  
(yO 1)2 

yo Btt (7) 

y ° L = ( y ° -  1) Q z + ( 2 y ° +  1) C + ( y  ° 2 - 1 )  C t + - -  (Y°-1)2C.  (8) 
2 

yOM= (yo _ 1)z Q2(2Bt +Bt t )+  (yo _ 1) QP 

2 
+2(y° + I) D + ~  (yo_ 1)(yo + 2) Ot + _ _  

(y ° -  1)2 
Dtt (9) 

yON=(yO l)3 2 " Q (2Bt + Btt)- B .  + 2(y ° - 1)2 Q(2B t + Btt) ( C  + Ct) 

+ ( y ° -  1)2 
2 

- -  Q [ B  + (@o _ 5) Bt + 3(y ° - 1) Btt ] (2Ct  + Ct,) 

(~° -1)  p 2 + 2 ( y ° - l )  
4 3 

- -  Q[3D+(2y°  + 1) Dt +(y  ° -  1) Dtt ] 

where 

1)(to + 3) 
+ ( 2 ~ ° + 3 ) E +  

2 Et + ~ E t t  

P = 2C+ 2y°Ct + (yo _ 1) Ctt 

(10) 

Q =  B +(2~ ° -  l) Bt.-[-(~ ° -  1) Btt 
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and we have introduced the notation 

A dA A T 2 d2A 
t = T ~-~ and tt = 

Usually, the speed of sound is measured as a function of the pressure, not 
the density. In this case it is more convenient to expand the sound speed 
in terms of the pressure: 

"~ 3 4 \ 
u 2 = 7 ° R T ( 1  f l a P .  7 ,P-  t~,p e , p  . 

Mm \ +-k-TtRT+- +-kT + ...) (11) 

where the coefficients ft,, y, ,  and e, are related to K, L, M, and N by 

f l .= K= RTK' 

RT),, = L  - f l ,  B = (RT) 2 L' 
(12) 

(RT)  2 6, = M - fl, C -  2 R T ? , B  = (RT) 3 M'  

(RT) 3 e, = N +  f l , ( 2 B C -  D) -- B[ RT?aB + 3(RT) 2 t~,] - 2LC 

[Equat ion (12) also shows van Dael's [7]  definitions of K', L', and M' . ]  
Equations (7)-(10) and Eq. (12) were derived from Eqs. (1), (2), (4), 

and (5) with the help of a symbolic mathematics program. 3 The symbolic 
mathematics program generated the series expansion for the speed of 
sound, Eq. (6), correct to order pS, from which the coefficients were 
extracted. The pressure expansion, Eq. (I 1 ), was generated from Eq. (6) by 
iteratively substituting for V from the EOS. The resulting expressions for K 
and L and the corresponding relations for fl, and ?a are consistent with the 
results of van Dael. Likewise, the relation for ~a is also consistent. 
However, the expression for M, Eq. (9), disagrees with van Dael's. To our 
knowledge, the expression for N, Eq.(10),  and the corresponding 
expression for e, in Eq. (12) are new results. 

Note  that the n th acoustic virial coefficient is coupled to the n th den- 
sity virial coefficient and to all the lower density virial coefficients. For  
example, the third acoustic virial coefficient ?, is dependent on B and C, 
and their temperature derivatives Bt, Btt, Ct, and Ctt. There may be a tem- 
perature range for which the magnitude of y, is mostly dependent on B 

3 The program used was Maple V, Release 2.0b, distributed by Waterloo Maple Software. 
Brand names and commercial sources of materials, instruments, and software, when noted, 
are given for scientific completeness. Such information does not constitute a recommenda- 
tion by the National Institute of Standards and Technology, nor does it suggest that these 
products are the best for the described purpose. 
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(and its derivatives) and insensitive to C. If this occurs, a single density 
virial coefficient B may suffice for a fit to acoustic data with a quadratic 
pressure dependence. Similar statements apply to 6a and ca. We illustrate 
this point below with acoustic data for 1, 1, 1, 2-tetrafluoroethane (known 
as R134a in the refrigeration industry). The acoustic data have a cubic 
pressure dependence that can be fitted with only two density virial 
coefficients. 

3. THE SQUARE-WELL POTENTIAL 

Frequently, the square-well potential is used to correlate equation-of- 
state and speed-of-sound data for gases. It is particularly convenient 
because it has only three free parameters and convenient algebraic forms 
for the density virial coefficients. The temperature dependencies of the 
second and third virial coefficients for the square-well fluid appear to be 
consistent with our data over the experimental temperature range, 
provided that a different set of potential parameters is used for each virial 
coefficient. The hard-core volumes, well depths, and well widths are 
adjusted to provide a best fit to the data. Obviously, we are simply 
exploiting the functional forms provided by the square-well potential and 
can assign little physical significance to the fitted parameters themselves. 

The square-well potential is defined by 

{ OG, r ~  

U(r)= --e, a<r<2a (13) 

0, i"> 2a 

for pairwise interactions between particles separated by a distance r. 
Despite its simplicity, this potential has many features similar to real two- 
body potentials, namely, a repulsive core, an attractive well, and a finite 
range. The importance of these characteristics is borne out by further 
similarities between the calculated properties of the square-well fluid and 
those of real fluids. On the other hand, the square-well potential has other 
features that are very different from real potentials, and these differences 
ultimately impose limitations on this potential as a model of interactions in 
real fluids. At very high temperatures, T~>s/kB, the square-well fluid 
behaves like a system of hard spheres instead of a system of compressible 
spheres. Fortunately, this unrealistic feature is benign since this condition 
does not occur at temperatures where most gases are chemically stable. 

Closed-form expressions for B and C have been calculated from the 
square-well potential for arbitrary 2. They are 

B = bo[ 1 - ( 2 3 -  1) ,4] (14) 
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Table I. Values for the Coefficients in Eq. (16) for Three Values of 2 

), do dt d2 da d4 d5 d6 

1.1 0.2869 --0.2207 
1.5 0.2869 --0.1443 
2.0 0.2869 1.634 

0.1209 -0.04131 0.006438 --3.090x 10 -4 --3.023 x 10 -6 
--0.1844 --2.920 5.766 --2.197 --0.09867 

--23.29 54.65 70.76 -- 168.2 -- 12.74 

and 

C= (5--ClA--C2ZI2--C3 A3) 

cl = 2 6 -  1824+3223-  15 

c2 = 226 - 3624 + 3223 + 1822- 16 f for 
c 3 = 6 2 6 - 1 8 2 4 +  1822 - 6  

cl = 17 

c2 = -3223 + 1822 +48 I for 
c 3 = 5 2 6 - 3 2 2 3 +  1822+26 

1 ~<2-..<2 

2>..2 

(15) 

where A - e  ~/kBr- 1. 
We were unable to find a published, closed-form expression for the 

HCSWP fourth virial coefficient D for arbitrary 2. However, expressions 
for D have been calculated [8] for 2 = 1.1, 1.5, and 2.0. These expressions 
are polynomials in d whose coefficients depend on 2: 

D=b~(do+dtd-bd2A2-bd3d3"bd4d4+dsAS-kd6d6) (16) 

Values for the coefficients in Eq. (16) are given in Table I for the three 
values of 2. We have even less information about the HCSWP fifth virial 
coefficient E than we do for D. In analogy with the lower virial coefficients, 
we expect that E(T) can be expressed in the forrr/: 

1o 

E(T) =bg if" e,(2)A'(T) (17) 
i~0  

[The degree of the polynomial for the nth virial coefficient is n x ( n -  1 )/2.] 
From the hard-sphere virial equation, one knows [9] that eo=0.1104; 
however, the other coefficients are not known. At high reduced temperatures, 
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only the lowest terms in A are significant. These qualitative considerations 
led us to test the form 

E(T) = bg(0.1104 + e~ A(T)) (18) 

where e~, b0, and e [the latter in the definition of A(T)] are treated as 
adjustable parameters. 

4. APPLICATIONS 

The utility of HCSWP virial expansion for analyzing u(p, T) data 
is illustrated with data for three gases. The data used in the following 
examples span successively wider ranges of reduced temperature and 
pressure. (See Fig. 1.) Each succeeding example requires additional 
parameters to fit the pressure dependence of the data. For the first example 
6 parameters are used; for the second example, 9 parameters are used; for 
the third, 11 or 12 parameters are used. Upon attempting to enlarge the 
range of data in the third example, the practical limit of this method was 
reached. For each example, we required a representation of the constant- 
pressure ideal-gas molar heat capacity C°(T). For this purpose, the 
polynomial 

C°p/R=ao+al T+a2T 2 +a3 T3 +a4 T4 (19) 

was satisfactory. 

4.1. 1,1,1,2-Tetrafluoroethane, CF3CHzF 

The speed of sound u(p, T) was measured by Goodwin and Moldover 
[10] in 1,1,1,2-tetrafluoroethane (known as R134a in the refrigeration 
industry). Figure 1 displays the range of reduced temperature and pressure 
spanned by their data. In the published analysis, the data at the highest 
pressures on several isotherms were deleted to remove pressure dependence 
higher than O(p2). The remaining data were fit with square-well functions 
for fla(T) and ya(T). This required the adjustment of six parameters. Three 
additional parameters [a o, az, and a2 in Eq. (19)] were used to represent 
C°(T). When fitting their data, Goodwin and Moldover set 6a(T) equal to 
zero. Their fit of 72 data points using nine adjustable parameters had a 
reduced Z-" of 55. The deviations of the data from their fit are shown in 
Fig. 2. 

In fitting their data, Goodwin and Moldover overlooked the substan- 
tial contribution to da(T) from the derivatives of B(T) and C(T). We refit 

84o/J 7/6-7 
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Fig. 2. Deviat ions of u(p,  T) data  for 
CF3CH2F from fits of HCSWP virial equa- 
tion of state. Top: Deviations from the fit of 
Ref. 10 that omitted ~,,{T). Bottom: Devia- 
tions from present fit using the same func- 
tions and the same number of parameters 
including terms in ~°(T) that come from C, 
Ct, Ctt, B, Bt, and Btt. The isotherms are 
labeled with the kelvin temperature. 

their data  including this contribution. This contribution to ~a(T) permitted 
us to increase the pressure range of the data without either introducing 
additional parameters  or noticeably degrading the quality of the fit. 
Figure 2 compares  the present fit to the one published by Goodwin and 
Moldover.  The present fit to 94 data  points has a reduced Z 2 of 60. The 
new values of  the six parameters  used to fit the pressure dependence of 
these data are tabulated in the Appendix. For  completeness, the three 
parameters  used to represent C° (T)  are also tabulated in the Appendix. 

The deviations from both  fits shown in Fig. 2 are dominated by scatter 
among  the zero-pressure intercepts of  the isotherms. That  is, the pressure 
dependence of the data has been accounted for leaving deviations for each 
isotherm that are essentially horizontal lines on the graph. These deviations 
cannot  be removed by either additional parameters  or different functions 
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because the data on experimentally repeated isotherms did not reproduce 
themselves. (Note the pairs of isotherms at 300 and 310 K.) Goodwin and 
Moldover [10] attributed this irreproducibility to contamination of the 
CF3CH2F samples from their contact with polymers (electrical insulation, 
o-rings, etc.) that had been incorporated in their apparatus. (CF3CH2F 
was the first of the alternative refrigerants studied at NIST.) Subsequent 
measurements of u(p, T) in CF3CH2F and other gases (such as C2HF5, 
below) conducted in a polymer-free apparatus did not show deviations of 
this nature [ 11 ]. 

4.2. Pentafluoroethane, C2HF s 

The speed of sound in pentafluoroethane (known as R125 in the 
refrigeration industry) was recently measured by Gillis [2] on isotherms in 
the temperature and pressure range 0.71 <.T/Tc<~ 1.18 and 0.05~<p~< 
1.00 MPa. (See Fig. 1.) Boyes and Weber [12] used the Burnett method to 

1 7 0 t ~  ._.~400 

280 300 

110 f ~ i r t I I R i q 

1.0 

<1 0 ~- 

-1.0 

'__. 
0.2 0.4 0.6 0.8 1.0 

p ,  MPa  

Fig. 3. Top:  Measurements of u(p, T) in 
CsHF5 from Ref. 2. Bottom: Deviations of 
u(p, T) data for CsHFs from fits of HCSWP 
virial equation of state. The isotherms are 
labeled with the kelvin temperature. 
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measure the equation of state of gaseous C5HF5 on isochores between 160 
and 2800=mol .m -3 in the temperature range 0.80<~T/T¢<~l.07. The 
pressure extremes were 0.33 ~< p ~< 4.5 MPa. Thus these independent sets of 
data partially overlap and are used here to assess the accuracy of the 
present method of deducing gas densities from u(p, T). 

Figure 3 displays Gillis' fit to the u(p, T) data for C5HF5 and the 
deviations from his fit. Gillis used HCSWP functions for B(T), C(T), and 
D(T), and he fit the resulting expressions to fla, 7a, Ja, and e,. The fit 
shows random deviations with a fractional root-mean-square deviation of 
0.003 %. Thus, the HCSWP functions produced a very satisfactory fit to 
these u(p, T) data. The 12 parameters that Gillis used in this fit are 
tabulated in the Appendix. Three HCSWP parameters were used to repre- 
sent each of the three density virial coefficients and three parameters were 
used to represent C°(T). However, when searching for the "best" values of 

N 
I !  

c i .  
v 

1.0 ~ 6 0  

0 9  ' °  

~= 320 

0.8 

0.1 

O. 0 
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280 

I I I I  ~ 1  I 

-0.2 i I I i 
0 012 0:4 ' 0'.6 0.8 110 
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Fig. 4. Top: Compression factor of C5 HF5 
on isotherms where u(p, T) data from Ref. 2 
overlap ppT data from Ref. 12. Bottom: 
Fractional deviations of density estimated 
from u(p, T) data using HCSWP from inde- 
pendent  density measurements of  Ref. 12. 
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the 12 parameters, the parameter ;t in the definition of D(T) was allowed 
to assume only three values, 1.1, 1.5, and 2.0, that appear in Table I. 

Figure 4 displays the values of Z deduced from the HCSWP for 
CF3CH2F and the deviations of the density ztp from the values of the 
density deduced from the Burnett data [ 12]. The deviations are systematic; 
the largest deviations are -0.07 % and they occur at the highest densities 
encountered in the u(p, T) data. Density deviations of this size are 
acceptable for the design of refrigeration machinery because the imperfec- 
tions in modeling the mechanical components (e.g. the compressor) 
dominate the uncertainties in the design. The systematic deviations in 
Fig. 4 are yet another reminder that perfect u(p, T) data are not sufficient 
to define the equation of state exactly. 

4.3. Methane  

Recently, very accurate and precise measurements of u(p, T) in 
methane were made by Trusler and Zarari. For purposes of this discussion, 
the data are divided into three ranges that are identified in Fig. 1 as 
methane I, methane II, and methane III. Setzmann and Wagner have pub- 
lished [ 13] an accurate equation of state based on their comprehensive 
review of thermodynamic data for methane. Taken together, the work of 
Trusler and Zarari and that of Setzmann and Wagner contain the informa- 
tion needed to assess the accuracy of the present method of deducing gas 
densities from accurate u(p, T) data at gas densities that are higher than 
those encountered in data from our own laboratory. 

We attempted to fit the u(p, T) data for methane in three ranges and 
the results for each range are discussed below. For each range the HCSWP 
functions for fla, ?., ~., and e, were used. To extend the fit to higher 
densities, an additional contribution to e~(T) was used. This contribution 
was obtained from Eq. (18). 

Setzmann and Wagner [ 13] used spectroscopic information to repre- 
sent C°(T) for methane as a sum of Einstein functions. For our convenience, 
we fit their sum by Eq. (19). The resulting five parameters appear in the 
Appendix even though they were not deduced from the acoustic data. 

4.3.1. Methane I + Methane II." 0.66 <<. T/Tc<<.1.97 and O.05 <~ p <~ 3.0 MPa 

Figure 5 displays the u(p, T) data for the ranges methane I and 
methane II in Fig. 1, as well as the deviations from our fit to this data. In 
the initial attempts to .fit these data with the HCSWP functions, the 
parameter zl in the expression for E(T) became quite small, indicating that 
Eq. (18) was approaching its high-temperature limit: 

E(T) = e'o + e'~/T (20) 
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As an expedient, we adopted the ad hoc expression Eq. (20) because 
HCSWP expressions for E(T) are not available. The parameters that best 
fit the data are e ~ = - 3 . 7 5 6 x  10-16m12.mo1-4 and e ' l= l .092x10  -~3 
K. m ~2- mo1-4 in Eq. (20) and the nine HCSWP parameters tabulated in 
the Appendix. We remark that Eq.(20) with these values for the 
parameters cannot be considered a satisfactory HCSWP function because 
the result e~ < 0 would imply a core volume that is less than zero. 

The deviations from the fit (see Fig. 5) show that nearly all the 
pressure dependence of the data has been accounted for in the fitting func- 
tions. The most conspicuous deviations in Fig. 5 are the scatter among the 
zero-pressure intercepts of the isotherms. This feature occurred in the 
deviations for CF3CH2F. In effect, the methane data are not consistent 
with the function used to represent C°(T). However, for methane, the 
authors [4]  attributed this phenomenon to hysteresis in the radius of the 
acoustic resonator that they used to acquire the data rather than to 
uncontrolled impurities. 
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Fig. 5. Top: Measurements of u(p, T) in 
methane from Refs. 4 and 6 at pressures 
below 3 MPa.  Bottom: Deviations of u(p, T) 
data from the HCSWP fit. 
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Fig. 6. Top: Compression factor along 
isotherms of methane. Bottom: Fractional 
deviations of density estimated from u(p, T) 
data using HCSWP from the densities 
tabulated in Ref. 13. 

Figure 6 displays the values of Z deduced from the HCSWP for 
methane and the fractional density deviations zlp/p from the values of the 
density tabulated in ref. 13. The deviations are systematic and the largest 
deviation occurs at the highest density; it is only 0.06%, coincidentaUy 
about the same as the deviations for Cs HFs. Thus, in this higher-pressure, 
higher-temperature range, the HCSWP leads to very satisfactory densities. 

4.3.2. Methane II: 1.45 <<. T/To ~< 1.97 and 0.05 <<. p/Mpa <~ 3.0 

The results for this range were mentioned in Section 1. In this smaller 
range, the deviations of the u(p, T) data from the fit were a factor of 10 
smaller than the deviations shown in Fig. 5. In large part, the better fit is 
possible because these higher temperature data are more nearly consistent 
with spectroscopy-based polynomial representation of C°(T). Despite the 
greatly increased precision of the fit of the u(p, T) data, the densities 
deduced from the HCSWP functions are essentially identical to those dis- 
played in Fig. 6; thus, they need not be reproduced here. We emphasize 
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that the densities were deduced solely from acoustic data; they did not any 
require p - p - T  data whatsoever. 

4.3.3. Methane H+ Methane III." 1.45 <~ TIT c <~ 1.97 and 0.05 <<, p <~ 10 MPa 

As discussed in Section 1, this is the range for which Trusler and 
Zarari integrated their u(p, T) data. Because of the very high precision of 
these data, we used Trusler and Zarari's values of C°(T) even though they 
differ from the spectroscopic values. 

The HCSWP functions for B(T), C(T), and D(T) augmented by 
Eq. (18) for E(T) are unable to fit these u(p, T) data within their accuracy. 
The fit deviates from the data by as much as 0.06°,/0 in u(p, T). The 
HCSWP functions underestimate the density by as much as 0.75 %. This 
worst case occurs at 10 MPa and 275 K, where the density reaches its 
highest value, approximately 0.55 x Pc. 

When we restricted the pressure range on the 275 K isotherm to 
0.4 ~< p ~< 6.8 MPa, the remaining speed-of-sound data were fit within a few 
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methane from Refs. 4 and 6 at pressures below 
10 MPa. Bottom: Deviations of u(p, T) data 
from HCSWP fit. 
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parts in 105 by the HCSWP functions for B(T), C(T), and D(T) aug- 
mented by Eq.(18) for E(T) (see Fig. 7). The best-fit parameters were 
bo= 63.992 cm 3. mo1-1, el = -0.03302, and e = 1097.15 K. Figure 8 shows 
the values of Z that were obtained from the fit by the virial equation of 
state including E. The resulting values of p differed from independent 
measurements by less than 0.16 % throughout the range 1.45 <~ T/Tc <~ 1.97 
and 0.4~<p~<6.8 MPa for the lowest isotherm and the range 0,4~< 
p ~< 10 MPa on the higher-temperature isotherms. 

The dashed curves in Figs. 7 and 8 show the data that were deleted 
from the fit. In the worst case (T=275 K, p =  10 MPa), Au/u=O.O018 and 
Ap/p = 0.5 %. 

5. CONCLUSIONS 

At the time of this writing, our laboratory has acquired u(p, T) data 
for 15 candidate alternative refrigerants in approximately the same range of 
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reduced temperature and pressure as the data for CsHFs.  For five 
candidate refrigerants (CF3CH,_F, CsHFs,  CHF2CH3, CHFzOCHF2,  
and CF3CH2CF3), we have been able to compare the derived densities 
with high-quality independent p(p, T) data. In every case, the deviations 
are approximately the same in sign and magnitude as those shown in Fig. 4 
for CsHFs.  The "law" of corresponding states would predict this result. 
Thus, if it were necessary, the small systematic deviations shown in Fig. 4 
could be reduced by invoking an ad hoc "correction" deduced, for example, 
from Fig. 4. 

We have shown that accurate values of gas densities can be deduced 
solely from high-quality u(p, T) data using HCSWP functions together 
with the virial equation of state. Small systematic errors in p do remain. An 
important advantage of the HCSWP approach is that the virial coefficients 
have a physically reasonable temperature dependence. Thus, they can be 
extrapolated without encountering bizarre results. To illustrate this point, 
Fig. 9 shows the results of extrapolating densities obtained from the u(p, T) 
data to the vapor pressure p~ where the largest systematic errors occur [ 12]. 

For C F  3 C H  2 F and C5 HFs, the baseline in Fig. 9 represents the density 
of the saturated vapor Pvo obtained from the modified Benedict-Webb-Rubin 
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Fig. 9. Comparison of saturated vapor densities Pv, extrapolated from u(p, T) data using 
HCSWP functions with Pv~ obtained from multi-parameter multi-property correlations. For 
CFsCHzF and CsHF 5, the baseline is Ref. 14; for methane, the baseline is Ref. 13. 
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(mBWR) equations of state provided by the computer package 
[ 14-1 REFPROP 4.0. These mBWR equations were developed by simul- 
taneously fitting many thermodynamic properties over a very wide range 
of conditions; thus, they .are relatively free of large systematic errors; 
however, they probably do not provide the best possible representations of 
any specific property such as P w  in the range of interest here. For 
methane, the baseline in Fig. 9 is the Setzmann-Wagner [ 13] correlation 
mentioned above. 

The u(p, T) data for all three gases were taken on isotherms. For 
CF 3 CH 2 F the maximum pressure on each isotherm was the lesser of either 
0.6 MPa or 0.6 x Po, for C~_HF5 the maximum pressure was the lesser of 
1.0 MPa or 0.6 x p~, and for methane the maximum pressure was the lesser 
of 1.0MPa or 0.8xp#.  Thus, all of the results shown in Fig. 9 are 
extrapolations. In every case, the extrapolations are well behaved. The 
"largest" extrapolation (CF3CH2F from 0.6 to 1.5 MPa) was a factor of 
2.5 in pressure (corresponding to a factor of 3.1 in density). In this case, 
P w  differs from the mBWR P w  by 0.7%. In this case, Z=0.73;  thus, the 
extrapolation accounts for almost all of the deviations from ideal-gas 
behavior. Of course, when a very small extrapolation was required, as was 
the case for methane, Pv,  is more accurate in the same region. In situations 
where errors comparable to those shown in Fig. 4 and Figs. 6-9 are 
acceptable, the vapor-phase equation of state and P w  may be determined 
solely from u(p, T); no vapor-phase p-p-T data are required. 

APPENDIX 

Table AI. Parameters for Hard-Core Square-Well Potentials Used to Fit u(p, T) Data 

B C D 

bo e bo e bo e 
(cm3.mol -I) 2 (K) (cm3-mol -l) 2 (K) (cm3.mol -=) 2 (K) 

CF:~CH2F 

C.HFs 

CH 4 

l&ll 

CH4 

ll&llI 

51.615 1.3231 655.6 373.29 1.0907 412.0 0.0 

123.01 1.3241 415.63 258.75 I.ll51 575.09 I05.6 2.0 173.8 

48.039 1.6372 131.82 51.987 2.1798 51.189 70.756 2.0 55.98 

46.255 1.5784 149.56 51.459 2.0915 50.494 62.669 2.0 95.302 
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Table AII. Parameters for Ideal-Gas Constant-Pressure Molar Heat Capacity [Eq. (19)] 

ao 

103al 10Sa2 107as 10t°a4 
(K -I ) (K -2) (K -s) (K -4) 

CF3 CH2 F 2.2540 31.7 - 1.68 0.0 0.0 
C, HF s 3.25482 31.377 - 1.42 0.0 0.0 
CH4 3.65821 7.844915 -6.355557 2.074733 - 1.964084 
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